Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.

Identifieur interne : 000633 ( Main/Exploration ); précédent : 000632; suivant : 000634

Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.

Auteurs : Martin P. Wierzbicki [Afrique du Sud] ; Victoria Maloney [Afrique du Sud] ; Eshchar Mizrachi [Afrique du Sud] ; Alexander A. Myburg [Afrique du Sud]

Source :

RBID : pubmed:30858858

Abstract

Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.

DOI: 10.3389/fpls.2019.00176
PubMed: 30858858
PubMed Central: PMC6397879


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.</title>
<author>
<name sortKey="Wierzbicki, Martin P" sort="Wierzbicki, Martin P" uniqKey="Wierzbicki M" first="Martin P" last="Wierzbicki">Martin P. Wierzbicki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maloney, Victoria" sort="Maloney, Victoria" uniqKey="Maloney V" first="Victoria" last="Maloney">Victoria Maloney</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizrachi, Eshchar" sort="Mizrachi, Eshchar" uniqKey="Mizrachi E" first="Eshchar" last="Mizrachi">Eshchar Mizrachi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Myburg, Alexander A" sort="Myburg, Alexander A" uniqKey="Myburg A" first="Alexander A" last="Myburg">Alexander A. Myburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30858858</idno>
<idno type="pmid">30858858</idno>
<idno type="doi">10.3389/fpls.2019.00176</idno>
<idno type="pmc">PMC6397879</idno>
<idno type="wicri:Area/Main/Corpus">000996</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000996</idno>
<idno type="wicri:Area/Main/Curation">000996</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000996</idno>
<idno type="wicri:Area/Main/Exploration">000996</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.</title>
<author>
<name sortKey="Wierzbicki, Martin P" sort="Wierzbicki, Martin P" uniqKey="Wierzbicki M" first="Martin P" last="Wierzbicki">Martin P. Wierzbicki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maloney, Victoria" sort="Maloney, Victoria" uniqKey="Maloney V" first="Victoria" last="Maloney">Victoria Maloney</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizrachi, Eshchar" sort="Mizrachi, Eshchar" uniqKey="Mizrachi E" first="Eshchar" last="Mizrachi">Eshchar Mizrachi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Myburg, Alexander A" sort="Myburg, Alexander A" uniqKey="Myburg A" first="Alexander A" last="Myburg">Alexander A. Myburg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as
<i>Eucalyptus</i>
and
<i>Populus</i>
trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30858858</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.</ArticleTitle>
<Pagination>
<MedlinePgn>176</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00176</ELocationID>
<Abstract>
<AbstractText>Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as
<i>Eucalyptus</i>
and
<i>Populus</i>
trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wierzbicki</LastName>
<ForeName>Martin P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maloney</LastName>
<ForeName>Victoria</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mizrachi</LastName>
<ForeName>Eshchar</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Myburg</LastName>
<ForeName>Alexander A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">bioproducts</Keyword>
<Keyword MajorTopicYN="N">biorefinery</Keyword>
<Keyword MajorTopicYN="N">cellulose</Keyword>
<Keyword MajorTopicYN="N">industrial processing</Keyword>
<Keyword MajorTopicYN="N">lignin</Keyword>
<Keyword MajorTopicYN="N">metabolism</Keyword>
<Keyword MajorTopicYN="N">wood fiber</Keyword>
<Keyword MajorTopicYN="N">xylan</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30858858</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00176</ArticleId>
<ArticleId IdType="pmc">PMC6397879</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 1999 Aug;4(8):320-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10431222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Mar;67(3):1163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11229906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Apr;6(4):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):371-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):24204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Oct;116(2):238-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):740-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 14;420(6912):206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):495-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Feb;4(2):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12560811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2003 Mar 28;338(7):597-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2003 Spring;105 -108:277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 8;278(32):29442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12759349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2140-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Sep;35(6):693-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jul;52(4):865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13677473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 21;279(21):22548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):867-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2004 Sep-Oct;5(5):1983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15360314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jan 28;280(4):2780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(6):968-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15584961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2004 Sep-Oct;327(9-10):785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15587069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):182-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):404-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2005 Mar-Apr;6(2):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15762640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(2):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2005 May 30;44(22):3358-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15861454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Mar;11(3):124-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16490379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 9;312(5779):1491-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1971 Oct;48(4):480-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1975 Nov;56(5):608-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1980 Oct;66(4):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Jul;78(3):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(15):1686-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Jun;67(12):1276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):855-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Dec;276(6):517-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16969662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1582-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2007 Mar;17(3):345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):237-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):1083-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 15;316(5831):1597-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Oct;226(5):1117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17594112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2007 Aug;8(8):2485-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17630692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(2):252-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17764499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(6):1154-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Dec;48(12):1659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18486536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1822-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1947 Dec 27;160(4078):911-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18917315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1087-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19098094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Apr;50(4):812-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19224953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jun;136(2):237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;581:263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19768628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):1015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Apr;101(8):2755-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20045313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):542-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20424005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(20):7812-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Sep;3(5):834-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20595206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):78-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2010 Nov 22;3(11):1268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20836121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2011 Jan;3(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20957280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 23;5(11):e15481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):1028-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(3):401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21251108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(3):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21288268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2011 Mar 14;12(3):831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21302950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:127-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Sep;234(3):515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21538106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Aug 1;437(3):505-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2011 Jul 12;23(26):2924-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21567482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Jun 24;4(1):18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 18;286(46):39982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Jan;53(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):989-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2012 Feb 13;5(2):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22275334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2009;7:e0121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Jul;53(7):1204-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22537759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Jul 01;2:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 31;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1355-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22665445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 17;337(6096):816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1627-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22893684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3506-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 2012 Dec;60(12):898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23042481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Nov;53(11):1934-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Nov;30(11):1131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23086202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Apr;11(3):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Nov 26;5(1):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Jul;6(4):1373-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23340742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jan 28;6(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jan;25(1):270-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23371948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(3):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):1783-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23447525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:747-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 28;152(5):1173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23463782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2013 Mar 1;93(1):347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23465940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Apr 15;451(2):145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Mar 27;4:67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 10;4:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jul;54(7):1186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23659919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1881-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23695979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 May 24;14(6):10958-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 21;4:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23734153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2013 Jun 07;12:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23758664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jun;25(6):2084-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23771893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Oct;238(4):627-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23801299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):710-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23889164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Nov;163(3):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Nov;163(3):1164-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3988-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24096341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2580</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24105024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Dec;149:413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24128404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Jan;15(1):34-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24296534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2014 Mar 11;386:99-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(2):e27797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24518588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2014 Aug;111(8):1541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Apr;219-220:42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):894-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):876-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Oct;152(2):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24641584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Apr;26:100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24679265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Jun;223:45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Apr 25;26(4):1681-1697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24769481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 16;344(6185):1246843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24833396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):492-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jun 19;510(7505):356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24919147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:210-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24997793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Sep;19(9):564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24999240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMB Express. 2014 Jul 09;4:55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25024928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Jan;13(1):26-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 13;9(8):e105014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25118690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jul 28;5:357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25120548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25139408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25141999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Aug;13(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2519111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):666-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25307149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jan;66(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25326916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Jan;1(1):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2535470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2015 Mar;47(3):497-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25488426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 10;14:344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25492673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jan 29;517(7536):571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Dec;13(9):1241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25583257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1314-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1271-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jul;8(7):1119-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25743197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2015 May 13;63(18):4613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25775127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jun;185:316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Mar 12;8:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25802552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Apr;27(4):1218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25804536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 May;168(1):74-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25810096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jun;168(2):452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 20;10(4):e0123878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25894575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 14;11(5):e1004786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25973920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Aug;83(3):413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26043357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Jun 18;15:56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1619-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26134167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Nov 2;8(11):1563-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26384576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1366-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26443261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Oct 9;350(6257):198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26450210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jan;57(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Dec 21;8:224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 08;11(1):e0146460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26745802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Feb;37:190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26775114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Feb;243:120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Mar;57(3):568-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26858288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2016 Feb;44(1):74-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26862191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):1999-2023</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26917684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Apr;30:94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26943939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26951434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(12):5615-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26969735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 May;171(1):165-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26979331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 09;7:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27014319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2016 Sep;26(9):940-949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27072815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Sep;244(3):589-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27105886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 11;7:493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2418-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Sep;92(1-2):25-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27333892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2016 Aug 24;116(16):9305-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27459699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jul 12;7:1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Oct;172(2):1334-1351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27566165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1612-1624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27600813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Dec;221:26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27631890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11348-11353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27647923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Feb;89(4):746-763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27862526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Feb;173(2):998-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27940492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Mar;89(6):1146-1158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27984670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Dec 21;7:13902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28000667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jan;29(1):129-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28062750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1195-1200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jan 10;7:2047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28119723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2017 May;232:126-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28214699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Feb 23;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2017 Apr 10;18(4):1311-1321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28252951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1491-1505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Mar 03;3:17017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28260782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Mar 03;3:17024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28260793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 May;36(5):731-743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28289884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 04;7:45471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28374798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Apr 20;10:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28428822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 13;7(1):3370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28611454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jul;29(7):1585-1604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 27;7(1):6732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28751638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2017 Sep 22;10(18):3565-3573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28768066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Nov;92(3):386-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28792629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Nov;175(3):1018-1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28878036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 13;7(1):11462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28904370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2017 Nov 15;176:381-391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28927622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Sep 16;10:221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28932262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Sep 19;10:224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28932265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 May;16(5):976-988</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28944540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Oct;29(10):2433-2449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Oct;3(10):814-824</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Oct 13;68(17):4939-4950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Nov;3(11):859-865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Dec 1;58(12):2126-2138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Oct 27;13(10):e1006667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29077761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2018 Jan;22(1):109-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Nov 30;10:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Nov 30;10:253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Nov 30;10:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Nov 30;10:286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29213325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2017 Dec 27;10:311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29299061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(1):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29315591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Jan 9;11:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29321811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Mar 1;59(3):554-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Jan 17;11:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29371885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2018 May 11;121(6):1107-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29415210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Mar 22;11:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29588659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 27;9:384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29636762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Apr 25;8(1):6538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29695732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jul;219(1):230-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29708593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jul;177(3):1096-1107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29760198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2018 Aug 1;193:45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29773396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):6064-6069</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29784804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2018 Jun 23;34(7):102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29936649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2018 Aug 16;11:225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30147748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Sustain Chem Eng. 2018 May 7;6(5):5663-5680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30271688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2019 Feb 1;205:217-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30446098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1997 Sep;16(11):787-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Polymers (Basel). 2018 Jun 05;10(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30966652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Sep 5;263(25):12278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3137224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Oct 27;164(2):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7590338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Jul;28(4):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7647304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Oct;35(3):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Oct 20;1321(3):200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9393637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1998 Feb;16(2):177-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9487526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
</country>
</list>
<tree>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Wierzbicki, Martin P" sort="Wierzbicki, Martin P" uniqKey="Wierzbicki M" first="Martin P" last="Wierzbicki">Martin P. Wierzbicki</name>
</noRegion>
<name sortKey="Maloney, Victoria" sort="Maloney, Victoria" uniqKey="Maloney V" first="Victoria" last="Maloney">Victoria Maloney</name>
<name sortKey="Mizrachi, Eshchar" sort="Mizrachi, Eshchar" uniqKey="Mizrachi E" first="Eshchar" last="Mizrachi">Eshchar Mizrachi</name>
<name sortKey="Myburg, Alexander A" sort="Myburg, Alexander A" uniqKey="Myburg A" first="Alexander A" last="Myburg">Alexander A. Myburg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000633 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000633 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30858858
   |texte=   Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30858858" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020